Effects of A and B Wolbachia and host genotype on interspecies cytoplasmic incompatibility in Nasonia.

نویسندگان

  • S R Bordenstein
  • J H Werren
چکیده

Wolbachia endosymbionts cause postmating reproductive isolation between the sibling species Nasonia vitripennis and N. giraulti. Most Nasonia are doubly infected with a representative from each of the two major Wolbachia groups (A and B). This study investigates the role of single (A or B) and double (A and B) Wolbachia infections in interspecies cytoplasmic incompatibility (CI) and host genomic influences on the incompatibility phenotype. Results show that the single A Wolbachia harbored in N. vitripennis (wAv) is bidirectionally incompatible with the single A Wolbachia harbored in N. giraulti (wAg). Results also indirectly show that the N. vitripennis wBv is bidirectionally incompatible with the N. giraulti wBg. The findings support current phylogenetic evidence that suggests these single infections have independent origins and were acquired via horizontal transfer. The wAv Wolbachia expresses partial CI in the N. vitripennis nuclear background. However, following genomic replacement by introgression, wAv expresses complete CI in the N. giraulti background and remains bidirectionally incompatible with wAg. Results show that double infections can reinforce interspecies reproductive isolation through the addition of incompatibility types and indicate that the host genome can influence incompatibility levels. This study has implications for host-symbiont coevolution and the role of Wolbachia in speciation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Host genotype determines cytoplasmic incompatibility type in the haplodiploid genus Nasonia.

In haplodiploid species, Wolbachia-induced cytoplasmic incompatibility (CI) can be expressed in one of two ways: as a "conversion" of diploid fertilized eggs into haploid males or as embryonic mortality. Here we describe CI-type variation within the parasitic wasp genus Nasonia and genetically analyze the basis of this variation. We reach four main conclusions: (i) CI is expressed primarily as ...

متن کامل

Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility.

The bacterium Wolbachia manipulates reproduction in millions of insects worldwide; the most common effect is cytoplasmic incompatibility (CI). We found that CI resulted from delayed nuclear envelope breakdown of the male pronucleus in Nasonia vitripennis. This caused asynchrony between the male and female pronuclei and, ultimately, loss of paternal chromosomes at the first mitosis. When Wolbach...

متن کامل

Disentangling a Holobiont – Recent Advances and Perspectives in Nasonia Wasps

The parasitoid wasp genus Nasonia (Hymenoptera: Chalcidoidea) is a well-established model organism for insect development, evolutionary genetics, speciation, and symbiosis. The host-microbiota assemblage which constitutes the Nasonia holobiont (a host together with all of its associated microbes) consists of viruses, two heritable bacterial symbionts and a bacterial community dominated in abund...

متن کامل

Comparative Genomics of Two Closely Related Wolbachia with Different Reproductive Effects on Hosts

Wolbachia pipientis are obligate intracellular bacteria commonly found in many arthropods. They can induce various reproductive alterations in hosts, including cytoplasmic incompatibility, male-killing, feminization, and parthenogenetic development, and can provide host protection against some viruses and other pathogens. Wolbachia differ from many other primary endosymbionts in arthropods beca...

متن کامل

Rrh: Wolbachia Superinfection in Aedes Albopictus Title: Origin of Wolbachia Superinfection in Aedes Albopictus by Sequential Population Replacement

A reproductive advantage afforded to female hosts by obligate intracellular Wolbachia infections can result in the spread of the vertically-inherited bacteria into the host population, replacing the uninfected cytotype (population replacement). Here we examine Wolbachia infection dynamics relevant to the origin of Wolbachia superinfection (i.e., host individuals that are co-infected with two or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 148 4  شماره 

صفحات  -

تاریخ انتشار 1998